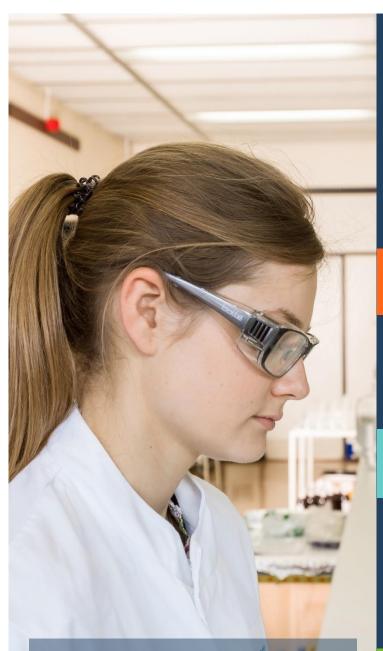


Our Branding

The National Measurement Laboratory (NML) Reference Materials are currently sold under two brands; ERM and LGC. LGC's certified reference materials were branded on release as ERM products between 2006 and 2017. ERM was a joint project between LGC, BAM (https://www.bam.de) and JRC (https://ec.europa.eu/jrc) which is no longer active. All materials released since summer 2017 have been branded as LGC products.

Our UKAS Accreditation


Many of our reference materials and methods of producing them are within our scope for United Kingdom Accreditation Service (UKAS) accreditation, either for reference material production (accredited to ISO 17034:2016) and/or for our calibration methods (accredited to ISO/IEC 17025:2017).

This accreditation provides independent evidence that the reference materials at the NML have been prepared according to best practice. Accredited reference materials display the National Accreditation Symbol alongside them. Questions regarding accreditation for specific reference materials can be sent to measurement@lgcgroup.com.

Disclaimer

While reasonable care has been taken in the preparation of this document, the author does not assume responsibility for errors or omissions in the information contained herein.

contact LGC Standards for more information before purchase at uksales@lgcgroup.com

The UK's National Messurement
Laboratory (for chemical and
bio-measurement) at LGC
produces reference materials
(RMs) used worldwide. Our
portfolio of 150 RMs includes
accredited, certified, and quality
control materials.

Reference Material

As defined in ISO Guide 30:2015, 2.1.1

"Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process"

Certified Reference Material

As defined in ISO Guide 30:2015, 2. 1. 2

"A reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a reference material certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability"

Quality Control Material

A material which can be used for demonstrating that a measurement system is under statistical control, performs as expected and provides reliable results; it is a material where the trueness of the measurement result is not critical as long as it is consistent

The National Measurement Laboratory (NML) for chemical and bio-measurement, hosted at LGC, plays a leading role internationally to develop best practice and standardise measurements.

Our science supports manufacture and trade, protects consumers, furthers skills development and enhances quality of life.

Serving as the UK's Designated Institute for chemical and bio-measurement, we provide expert advice to government, industry, healthcare (NHS), academia and supports the work of the Government Chemist.

Index

lr	ndex	Mescapea
ı.	Clinical	12-18
	a. Blood & Serum Materialsb. Clinical Purity Materialsc. Forensic Alcohol Materials	
II.	Environment	19-33
	 a. Ash Materials b. Carbon Isotope Ratio Materials c. Drinking Water Materials d. Environment Purity Materials e. Fresh Water f. Miscellaneous Water Materials g. Sediment Materials h. Sewage Sludge Materials i. Soil Materials 	
III.	Food & Beverage	34-52
	 a. Alcohol Solutions b. Drink Products c. Fish and Fish Products d. Food & Beverage Purity Materials e. Fruit and Vegetable Products f. Meat and Meat Products g. Processed Food Products h. Animal Feeding Stuffs 	
IV.	Industrial	53-65
	a. Elemental Analysis Materialsb. Enthalpy of Fusion Materialsc. Flash Point Materialsd. Gypsum Materialse. Melting Point Materials	
٧.	Miscellaneous Materials	66
	a. All Miscellaneous Materials	
VI.	a. All Miscellaneous Materials Coming soon	67
R	8	

Clinical

Blood & Serum Material

Clinic Blood & Seru		AL
ERM-DA110	Human blood - tacrolimus	\geq
ERM-DA111	Human blood - sirolimus	<u> </u>
ERM-DA200	Frozen human serum - digoxin, high level	5
ERM-DA201	Frozen human serum - digoxin, low level	
ERM-DA250	Frozen human serum	
ERM-DA251	Frozen human serum	
ERM-DA252	Frozen human serum	
ERM-DA253	Frozen human serum	
ERM-DA345a	Frozen human serum - testosterone, high level	
ERM-DA346	Frozen human serum - testosterone, low level	
LGC8211	Frozen human serum - elements and selenomethionine	
LGC8276	Blood – Hip replacement wear metals – Cr and Co	

Clinical Purity Material

ERM-AC021	Sirolimus
ERM-AC022	Tacrolimus
ERM-AC200	Digoxin

Forensic Ethanol Material

ERM-AC510	Aqueous ethanol – 50 mg/ 100 ml
ERM-AC511	Aqueous ethanol – 67 mg / 100 ml
LGC5401	Aqueous ethanol – 80 mg/ 100 ml
LGC5402	Aqueous ethanol – 107 mg/ 100 ml
LGC5403	Aqueous ethanol – 200 mg/ 100 ml
LGC5409	Aqueous ethanol – 20 mg/ 100 ml

Environment

Heboldeanning MNOSIANA

Ash Material

LGC6180 Pulverised fuel ash

Carbon Isotope Ratio Material

ERM-AE672	Glycine - absolute carbon isotope ratio
LGC171-KT	Glycine solutions - absolute carbon isotope ratio

Drinking Water Material

LGC6026	Hard drinking water - metals
ERM-CA016	Soft drinking water - anions
LGC6027	Soft drinking water - metals
LGC6028	Hard drinking water - low level metals

Environment Purity Material

ERM-AC820	3,3',4,4' -tetrachlorobiphenyl (PCB77)
ERM-AC821	3,3',4,4',5-pentachlorobiphenyl (PCB 126)
ERM-AC822	3,3',4,4',5,5'-hexachlorobiphenyl (PCB 169)
ERM-AC823	Polychlorinated biphenyls in 2,2,4 -Trimethylpentane (iso-octane)
LGC1801	Nicotine

Fresh Water

	LGC6020	River water - anions	
	LGC6025	River water - anions	
14			
C			
100			
Tebe	2		
	18		E
	73		5
	CONTINE		

Environment

Miscellaneous Water Materials

LGC6016 Estuarine water

LGC6177 Landfill leachate - metals

Sediment Materials

LGC6187	River sediment
LGC6188	River sediment - PAHs
LGC6189	River sediment - extractable metals

Sewage Sludge Materials

ERM-CC136	Sewage sludge - metals
LGC6181	Sewage sludge - extractable metals
LGC6182	Sewage sludge - PAHs
LGC6184	Sewage sludge - PCBs

Soil Materials

ERM-CC135	Contaminated brickworks soil
LGC6115	Contaminated soil PCBs and PAHs
LGC6145	Contaminated clay loam soil - extractable metal, PAHs and inorganics
LGCQC3013	Loamy sand soil 2 - total petroleum hydrocarbons

Food & Beverage

Alcohol Solutions

FOOC	d & Beverage Jitelyone Paris Communications	BEVERAGE
LGC5404	Reference spirit - 5 % ABV	∞ М
LGC5405	Reference spirit – 15% ABV	_
LGC5412	Reference spirit - 40 % ABV	FOOD
ERM-AC406	Reference spirit - 40 % ABV	\circ
LGC5407	Reference spirit - 70 % ABV	ш.
ERM-BA001	Wine - nominal 5 % ABV	
ERM-BA002	Wine - nominal 10 % ABV	
ERM-BA003	Wine - nominal 15 % ABV	
ERM-BA005	Lager - 5 % ABV	
LGC5000	Brandy - 40 % ABV	
LGC5100	Whisky - congeners	

Drink Products

ERM-BD011	Orange juice - 1 °Brix
ERM-BD013	Orange juice - 20 °Brix
ERM-BD014	Orange juice - 55 °Brix
LGC7113	Fruit Squash – Total SO ₂

Fish and Fish Products

LGC7164	Crab paste		

Food & Beverage Purity Materials

	ERM-AC301	Butylated hydroxyanisole
	ERM-AC303	Leucomalachite green
	LGC1110	pp'-DDE
	LGC1205	Malathion
	LGC7300	Butylated hydroxytoluene
	LGC7302	Saccharin
	LGC7305	Potassium sorbate
1/2	LGC7330	Selenomethionine
CERT	LGC7330	7

Food & Beverage

Fruit and Vegetable Products

LGC7162 Strawberry leaves
LGC7114 Kale powder - nitrate

Meat and Meat Products

LGC7221 Beef LGC7222 Pork

LGC7242 1 % w/w pork in beef (nominal)

Animal Feeding Stuffs

LGC7173 Poultry feed – proximates and elements

Processed Food Products

ERM-BC210	Wheat flour - selenium and selenomethionine		
ERM-BD016	Sugar confectionery - sugars		
LGC7016	Chocolate confectionery		
LGC7103	Sweet digestive biscuit		
LGCQC101-	Chocolate mousse dessert - peanut protein		
KT			
LGCQC1020	Peanut flour		
LGC7155	Processed meat - Proximates, chloride, hydroxyproline & metals		
LGC7421	Allergen reference material - Skimmed milk powder		
LGC7422	Allergen reference material - Egg white powder		
LGC7424	Allergen reference material - Almond powder		
LGC7425	Allergen reference material - Hazelnut powder – partially defatted		
LGC7426	Allergen reference material - Walnut powder - partially defatted		
LGC746-KT	Allergen kit – Milk, Egg, Almond, Hazelnut and Walnut		

Industrial

Elemental Analysis Materials

		Tich.
Indu	ustrial	He Balbeanthing
Elemental	Analysis Materials	NDUSTRIA
LGC4001	Dibenzothiophene	
LGC4002 LGC4003	Acetanilide Benzoic acid	
LGC4003	4-Bromobenzoic acid	
LGC4009	2-lodobenzoic acid	

Enthalpy of Fusion Materials

LGC2601	Indium
LGC2603	Naphthalene
LGC2604	Benzil
LGC2605	Acetanilide
LGC2606	Benzoic acid
LGC2607	Diphenylacetic acid
LGC2608	Lead
LGC2609	Tin
LGC2610	Biphenyl
LGC2611	Zinc
LGC2612	Aluminium
LGC2613	Phenyl salicylate

Flash Point Materials

ERM-FC032	n-Nonane
ERM-FC033	n-Decane

Gypsum Materials

LGC2700	Natural gypsum
LGC2701	Natural anhydrite
LGC2702	Blended gypsum
LGC2703	Desulfurised gypsum

Industrial

Herongeamm, PINTSUGNI

Melting Point Materials

ERM-FC021	Carbazole
ERM-FC022	2-Chloroanthraquinone
ERM-FC023	Anisic acid
ERM-FC024	Diphenylacetic acid
ERM-FC025	Benzoic acid
ERM-FC026	Acetanilide
ERM-FC027	Benzil
ERM-FC028	Naphthalene
ERM-FC029	4-Nitrotoluene
ERM-FC030	Phenyl salicylate

Miscellaneous materials on the state of the

ERM-AC316 Solvent yellow 124
ERM-EF212 Petrol - sulfur
ERM-DZ002 Electronic cigarette liquid - nicotine & water
LGCQC5050 Colloidal gold nanoparticle - nominal diameter 30 nm

Hegapeanthia.

Clinical

Blood and Serum Materials

Human blood tacrolimus ERM-DA110

Batch: a
Unit size: 1 mL
Certified values:
Tacrolimus:
7.41 ± 0.25 µg/kg

Additional material info:

Tacrolimus: 7.82 ± 0.25 µg/L

The material was prepared by Analytical Services International (London, UK) by spiking blank pooled human whole blood with a standard solution of tacrolimus to give a nominal concentration of 8 µg/kg tacrolimus in blood.

Characterisation was carried out at LGC using exact matching isotopic dilution mass spectrometry.

This material is intended for use in the calibration of instruments, the validation of new methods, and monitoring the performance of methods commonly used in clinical laboratories to determine the tacrolimus content of human blood samples.

4005

Human blood - sirolimus ERM-DA111

Batch: a
Unit size: 1 mL
Certified values:
Sirolimus
9.24± 0.52 µg/kg

Additional material info:

Sirolimus: $9.73 \pm 0.55 \mu g/L$

Homogeneity and stability studies have been carried out and an inter-laboratory study of commutability was conducted following the principles of CLSI document EP30-A.

The intended use of this material is for the calibration of instruments and the validation, quality control and performance monitoring of methods to determine sirolimus in human blood. This material will help support laboratories, secondary standards producers and assay developers ensure compliance with ISO15189.

4005

Frozen human serum digoxin, high level ERM-DA200

Batch: a
<u>Unit size</u>: 1 mL
<u>Certified values:</u>
Digoxin: 2.08 ± 0.15 µg/kg

Additional material info: Digoxin: 2.74 ± 0.19 nmol/L Digoxin: 2.14 ± 0.15 μg/L Human serum from donors was supplied by Scipac (Sittingbourne, UK), and prepared by Cardiff Bioanalytical Services Ltd.

This material is intended for the validation of new and existing methods, and monitoring the performance of methods, commonly used in clinical laboratories to determine the digoxin content of human serum samples. It can also be used in the training and evaluation of staff. The material is clinically relevant since it closely matches the upper decision level for digoxin monitoring

Frozen human serum digoxin, low level ERM-DA201

Batch: a
Unit size: 1 mL
Certified values:
Digoxin:
0.845 ± 0.0.50 μg/kg

Additional material info: Digoxin: 1.110 ± 0.065 nmol/L Digoxin: 0.868 ± 0.051 µg/L Human serum from donors was supplied by Scipac (Sittingbourne, UK), and prepared by Cardiff Bioanalytical Services Ltd.

This material is intended for use in the validation of new and existing methods, and monitoring the performance of methods, commonly used in clinical laboratories to determine the digoxin content of human serum samples. It can also be used in the training and evaluation of staff. The material is clinically relevant since it closely matches the lower decision level for digoxin monitoring

4005

Frozen human serum ERM-DA250

Human blood serum was obtained from donors at the University Hospital of Wales.

Batch: a Unit size: 1 mL

This material is intended for use in the validation and ongoing monitoring of methods of analysis for the determination of creatinine and electrolytes in human blood samples.

4005

Certified values:				
Creatinine	$39.0 \pm 2 \text{mg/kg}$	Magnesium	47 ± 3 mg/kg	
Calcium	123 ± 5 mg/kg	Potassium	277 ± 14 mg/kg	
Lithium	$6.6 \pm 0.4 \text{mg/kg}$	Sodium	$3370 \pm 160 \text{mg/kg}$	

Frozen human serum ERM-DA251

Human blood serum was obtained from donors at the University Hospital of Wales.

Batch: a Unit size: 1 mL

This material is intended for use in the validation and ongoing monitoring of methods of analysis for the determination of creatinine and electrolytes in human blood samples.

Certified values:				
Creatinine	22 ± 2 mg/kg	Magnesium	19 ± 2 mg/kg	
Calcium	71 ± 3 mg/kg	Potassium	136 ± 7 mg/kg	
Lithium	$4.5 \pm 0.3 \text{ mg/kg}$	Sodium	2740 ± 80 mg/kg	

Frozen human serum ERM-DA252

Batch: a
Unit size: 1 mL
Certified values:
Creatinine:
3.1 ± 0.5 mg/kg

Human blood serum was obtained from donors at the University Hospital of Wales.

This material is intended for use in the validation and ongoing monitoring of methods of analysis for the determination of creatinine in human blood samples.

4005

Additional material information:			
Calcium	58 mg/kg	Potassium	67 mg/kg
Lithium	1.3 mg/kg	Sodium	2400 mg/kg
Magnesium	8.1 mg/kg		

Frozen human serum ERM-DA253

Batch: a
Unit size: 1 mL
Certified values:
Creatinine:
50 ± 2 mg/kg

Human blood serum was obtained from donors at the University Hospital of Wales.

This material is intended for use in the validation and ongoing monitoring of methods of analysis for the determination of creatinine in human blood samples.

4005

Frozen human serum – testosterone, high level ERM-DA345a

Batch: a
Unit size: 0.8 mL
Certified values:
Testosterone:
5.39 ± 0.16 μg/kg

Time-expired human blood serum from female donors was spiked with testosterone to bring the concentration within the normal range for male human serum.

This material is intended for use in the validation and ongoing monitoring of methods of analysis for the determination of testosterone in human blood samples.

4005

Frozen human serum – testosterone, low level ERM-DA346

Batch: a
Unit size: 0.8 mL
Certified values:
Testosterone:
0.25 ± 0.04 μg/kg

Time-expired human blood serum from female donors was used with a concentration within the normal range for female human serum.

This material is intended for use in the validation and ongoing monitoring of methods of analysis for the determination of testosterone in human blood samples.

Frozen human serum – elements and selenomethionine LGC8211

Batch: 1 Unit size: 1.1 mL Human serum from a single donor was prepared from blood obtained at the Royal Surrey County Hospital (Guildford, UK).

This material is intended for the validation of new and existing methods, and monitoring the performance of methods, commonly used in clinical laboratories to determine the importance of trace elements copper, selenium and zinc in human serum samples.

4005

Certified values:			
Copper	1130 ± 33 µg/kg	Selenium	64.1 ± 3.0 µg/kg
Zinc	658 ± 33 µg/kg	Selenomethionine	25.0 ± 1.6 µg/kg
Iron	496 ± 22 µg/kg		

Additional material data:			
Copper	18.18 ± 0.53 μmol/L	Selenium	$0.830 \pm 0.038 \ \mu mol/L$
Zinc	10.30 ± 0.52 µmol/L	Selenomethionine	0.1304 ± 0.0086 µmol/L
Iron	18.18 ± 0.53 µmol/L		

Blood – Hip replacement wear metals – Cr and Co LGC8276

Batch: 1 Unit size: 1.8 mL Indicative Values: Molybdenum 9 μg/kg Nickel 5 μg/kg Titanium 10 μg/kg The material was prepared by the UK's Trace Elements External Quality Assessment Scheme (TEQAS), (Guildford, UK) by adding the elements of interest to equine blood containing EDTA at a concentration of 1 mg/mL.

This material is intended for use in the calibration of instruments and the validation of new methods commonly used in clinical laboratories to determine the metal content of human blood samples.

4005

	Certified values:
Constituent	Concentration (µg/kg)
Chromium	6.69 ± 0.28
Cobalt	6.78 ± 0.20

Clinical Purity Material

Sirolimus ERM-AC021

Batch: a Unit size: 0.1 g Certified values: Purity:

98.89 ± 0.64 % mass

This material was produced from a batch of sirolimus donated by the supplier. It was dispensed into 0.1 g portions. The purity was assessed by combining data from HPLC-UV, Karl Fischer and TGA.

This material is intended for use in the calibration of instruments, quality control and the validation of methods to determine the immunosuppressant drug sirolimus. It can also be used in the training and evaluation of staff.

This material was produced from a batch of tacrolimus monohydrate in powder from kindly donated by Sandoz

Portions of at least 100 mg were dispensed into 1.25 mL

amber glass Vials with PTFE lined screw caps, and sealed

International GmbH.

in plastic bags containing desiccant.

4005

Tacrolimus ERM-AC022

Batch: a Unit size: 0.1 g

Certified values: Purity:

97.65 ± 0.68 % mass

This material is intended for use in the calibration of instruments, quality control and the validation of methods to determine the immunosuppressant drug tacrolimus. It can also be used in the training and evaluation of staff.

4005

Digoxin ERM-AC200

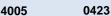
Batch: a Unit size: 0.5 g Certified values: Purity:

 $98.0 \pm 0.5 \%$ mass

A batch of digoxin was obtained from a commercial supplier of reagents. The purity was assessed by combining data from HPLC-UV, Karl Fischer, ICP-OES and GC/MS.

This material is intended for use in the validation and calibration and monitoring of methods to determine digoxin content. It can be used in the training and evaluation of staff.

Forensic Ethanol Material


Aqueous ethanol -50 mg/100 mL ERM-AC510

Batch: a Unit Size: 25 mL **Certified Value:** Ethanol content: $49.6 \pm 0.6 \text{ mg}/100 \text{ mL}$

This material, produced by LGC is a solution of ethanol in water at a nominal concentration of 50 mg/100 mL.

This material is primarily intended for use as a reference material for the calibration and validation of methods for the determination of ethanol in biological fluids.

Aqueous ethanol -67 mg/ 100 mL ERM-AC511

Batch: a Unit size: 25 mL Certified value: Ethanol content: $66.9 \pm 0.6 \, \text{mg}/100 \, \text{mL}$ This material, produced by LGC is a solution of ethanol in water at a nominal concentration of 67 mg/100 mL.

This material is primarily intended for use as a reference material for the calibration and validation of methods for the determination of ethanol in biological fluids.

0423

Aqueous ethanol -80 mg/ 100 mL LGC5401

Batch: 39 Unit size: 25 mL Certified value: Ethanol content: $80.1 \pm 0.6 \, \text{mg}/100 \, \text{mL}$ This material, produced by LGC, is a solution of ethanol in water at a nominal concentration of 80 mg/100 mL.

This material is primarily intended for use as a reference material for the calibration and validation of methods for the determination of ethanol in biological fluids.

4005

0423

Aqueous ethanol -107 mg/ 100 mL LGC5402

Batch: 26 Unit size: 25 mL Certified value: Ethanol content: $106.9 \pm 0.6 \text{ mg}/100 \text{ mL}$

This material, produced by LGC, is a solution of ethanol in water at a nominal concentration of 107 mg/100 mL.

This material is primarily intended for use as a reference material for the calibration and validation of methods for the determination of ethanol in biological fluids.

4005

0423

Aqueous ethanol -200 mg/100 mL LGC5403

Batch: 24 Unit size: 25 mL Certified value: Ethanol content: 199.8 ± 0.7 mg/100 mL This material, produced by LGC, is a solution of ethanol in water at a nominal concentration of 200 mg/100 mL.

This material is primarily intended for use as a reference material for the calibration and validation of methods for the determination of ethanol in biological fluids.

4005

0423

Aqueous ethanol -. 20 mg/100 mL LGC5409

Batch: 3 Unit size: 25 mL Certified value: Ethanol content: $20.1 \pm 0.6 \text{ mg}/100 \text{ mL}$ This is a solution of ethanol in water at a nominal concentration of 20 mg/100 mL

This material is primarily intended for use as a Reference material for the calibration and validation of methods for the determination of ethanol in biological fluids.

4005

0423

Heropeaning.

Environment

Ash Materials

Pulverised fuel ash LGC6180

HEBARCAN. WNONIANA This material is intended for use in development, validation or quality control of

This material was obtained from a disposal site near Carmarthen Bay in South

Wales, UK. Pulverised fuel ash is a waste product of coal-fired power stations.

analytical methods for the determination of the extractable metal content in ash based material.

The extractable metal content refers to metals soluble in agua regia using methods based on ISO 11466:1995.

Indicative values: Extractable metal content			
Antimony	12 mg/kg	Lithium	46 mg/kg
Beryllium	2.3 mg/kg	Mercury	0.5 mg/kg
Boron	25 mg/kg	Selenium	2 mg/kg
Iron	32900 mg/kg	Titanium	610 mg/kg

	Total	metal content	
Aluminium	13100 mg/kg	Magnesium	8500 mg/kg
Antimony	16 mg/kg	Manganese	410 mg/kg
Arsenic	100 mg/kg	Molybdenum	5 mg/kg
Barium	1300 mg/kg	Nickel	110 mg/kg
Beryllium	6 mg/kg	Potassium	29600 mg/kg
Calcium	9200 mg/kg	Selenium	3 mg/kg
Chromium	140 mg/kg	Sodium	5100 mg/kg
Cobalt	41 mg/kg	Tin	7 mg/kg
Copper	130 mg/kg	Titanium	4400 mg/kg
Iron	52400 mg/kg	Vanadium	260 mg/kg
Lead	110 mg/kg	Zinc	260 mg/kg
Lithium	130 mg/kg		

4005

Batch: 1 Unit size: 50 g

HCEODCONING

Hebappeak This

Glycine – absolute carbon isotope ratio ERM-AE672

Batch: a

Unit size: 0.5 g

Certified value:

 $n(^{13}C)/n(^{12}C)$ Certified value (ratio): 0.010648 Uncertainty (ratio): 0.000031 Additional material data:

 $\delta_{13}C_{VPDB-LSVEC}$: - 42.12 ± 0.42 (%)

The material was prepared from a single batch of commercially available high purity glycine and dispensed as ≥ 0.5 g units in 4 mL amber screw top vials.

This material is intended for use in the calibration of instruments, the validation of new methods and the monitoring of the performance of methods used for the determination of carbon isotope ratios. It can also be used for the training and evaluation of staff.

4005

Glycine solution- absolute carbon isotope ratio LGC171-KT

Batch: 1

Unit size: 0.5 g

The material was prepared from a single batch of commercially available high purity glycine.

This material is intended for use in the calibration of instruments, the validation of new methods and the monitoring of the performance of methods used for the determination of carbon isotope ratios. It can also be used for the training and evaluation of staff.

	Certified Values:	
	$n(^{13}C)/n(^{12}C)$ ratio for:	
LGC1711	0.010642±0.000030	
LGC1712	0.010821±0.000030	
LGC1713	0.011227±0.000032	

	Indicative Valu	ies:
	$\delta^{13}C_{VPDB-LSVEC}$	Uncertainty
	(‰)	(‰)
LGC1711	-42.22	0.34
LGC1712	-24.66	0.24
LGC1713	+12.55	0.22

Drinking Water Materials

HCBODCOKINE

Hard drinking water UKmetals LGC6026

Hard drinking water was sourced from Lichfield (Staffordshire, UK) potable mains supply. The water was filtered through a set of 8 μ m, 1.2 μ m and 0.45 μ m in-line filter and acidified to approximately 0.1% nitric acid and pH <2.0.

This material is primarily intended for use in development, validation or quality control of analytical methods for the determination of elements in hard drinking water. The material may also be applicable to other similar matrices where more closely matched reference materials are not available.

Batch: 003

Unit size: 250 mL

	Certified	d values:	
Aluminium	199.9 ± 6.1 µg/L	Lithium	11.24 ± 0.58 μg/L
Antimony	$4.99 \pm 0.17 \mu g/L$	Magnesium	$18.50 \pm 0.76 \text{ mg/L}$
Arsenic	$10.00 \pm 0.31 \mu g/L$	Manganese	48.4 ± 1.5 μg/L
Barium	116.1 ± 3.5 µg/L	Molybdenum	4.77 ± 0.25 μg/L
Beryllium	5.08 ± 0.26 µg/L	Nickel	19.00 ± 0.72 μg/L
Boron	983 ± 26 µg/L	Potassium	$5.30 \pm 0.15 \text{ mg/L}$
Cadmium	4.98 ± 0.15 µg/L	Selenium	10.19 ± 0.59 μg/L
Calcium	77.1 ± 2.2 mg/L	Sodium	24.60 ± 0.79 mg/L
Chromium	50.0 ± 1.9 μg/L	Strontium	491 ± 20 μg/L
Cobalt	$4.88 \pm 0.17 \mu g/L$	Thallium	5.11 ± 0.42 μg/L
Copper	2017 ± 56 μg/L	Uranium	4.95 ± 0.40 μg/L
Iron	198.4 ± 5.5 µg/L	Vanadium	$4.96 \pm 0.15 \mu g/L$
Lead	9.98 ± 0.14 µg/L	Zinc	621 ± 19 µg/L
	1.0		. 0

Soft drinking water UKanions ERM-CA016

Batch: a
Unit size: 250 mL
Certified value:

Chloride: 250 ± 7 mg/L Nitrate: 48 ± 3 mg/L Fluoride: 1.5 ± 0.1 mg/L Sulfate: 254 ± 10 mg/L

Indicative value: Ammonium: 0.48 mg/L A supply of tap water (Plymouth, UK) was collected, and copper sulfate was added as a biocide at a final concentration of 1 mg/L (as copper). The water was then filtered through 1 μ m cellulose filters. The base levels of the analytes were measured and high purity salts were added gravimetrically to achieve anion concentrations in the water approximating to the maximum permissible levels specified in EU/UK drinking water regulations (EC directive 98/83/EC).

This material is intended for use in validating methods and for confirming instrument calibration for anions in drinking water.

Soft drinking water metals LGC6027

Soft drinking water was sourced from the Bury (Lancashire, UK) potable mains supply.

4005

Batch: 1 Unit size: 250 mL

	Certif	ied values:	
Aluminium	196.1 µg/L	Manganese	49.9 μg/L
Antimony	5.21 μg/L	Molybdenum	4.62 μg/L
Arsenic	10.00 μg/L	Nickel	20.01 μg/L
Barium	115.7 μg/L	Selenium	10.21 μg/L
Beryllium	5.09 µg/L	Strontium	496 µg/L
Boron	1006 μg/L	Thallium	4.88 μg/L
Cadmium	5.09 µg/L	Uranium	4.95 μg/L
Chromium	49.9 μg/L	Vanadium	4.93 μg/L
Cobalt	4.87 μg/L	Zinc	613 µg/L
Copper	1995 μg/L	Calcium	8.53 µg/L
Iron	200.0 μg/L	Magnesium	1.026 µg/L
Lead	10.15 μg/L	Potassium	0.367 µg/L
Lithium	10.41 µg/L	Sodium	4.36 µg/L

Hard drinking water – metals LGC6028

Hard drinking water was sourced from the Tamworth (Staffordshire, UK) potable ains supply.

Hard drinking water was sourced from the Tamworth (Staffordshire, UK) potable supply.

This reference material is primarily intended for use in the development, validation of quality control of analytical methods for the determination of metals in hard drinking water. The material may also be applicable to other similar matrices where more closely matched reference materials are not available.

4005

Batch: 1 Unit size: 250 mL

	Certi	fied values	
Aluminium	20.1 μg/L	Molybdenum	2.20 μg/L
Antimony	5.02 µg/L	Nickel	4.85 μg/L
Arsenic	4.98 μg/L	Selenium	5.13 μg/L
Barium	92.8 μg/L	Strontium	193.8 μg/L
Beryllium	2.05 μg/L	Thallium	4.98 μg/L
Boron	76.2 μg/L	Uranium	4.90 μg/L
Cadmium	0.970 μg/L	Vanadium	1.908 μg/L
Chromium	9.76 μg/L	Zinc	58.2 μg/L
Cobalt	4.66 µg/L	Calcium	79.6 mg/L
Copper	36.0 µg/L	Magnesium	13.30 mg/L
Lead	1.033 µg/L	Potassium	4.91 mg/L
Lithium	10.44 μg/L	Sodium	23.47 mg/L
Manganese	4.74 μg/L		

Hegopeaning.

Environment Purity Materials

3,3',4,4'tetrachlorobiphenyl (PCB77) ERM-AC820

Batch: a

Unit size: 0.02 g Certified value:

Purity:

99.8 + 0.2/- 0.3 mass %

A batch of PCB 77 was obtained from a commercial supplier.

This material is primarily intended as a calibration standard in methods of analysis of PCB 77 in environmental and other relevant matrices.

3,3',4,4',5 pentachlorobiphenyl (PCB 126) ERM-AC821

Batch: a

Unit size: 0.02 g

Certified value:

Purity:

 $98.9 \pm 0.3 \text{ mass } \%$

A batch of PCB 126 was obtained from a commercial supplier.

This material is primarily intended as a calibration standard in methods of analysis of PCB 126 in environmental and other relevant matrices.

4005

3,3',4,4',5,5'hexachlorobiphenyl (PCB 169) ERM-AC822

Batch: a

Unit size: 0.02 g

Certified value:

Purity:

99.4 + 0.6/- 1.3 mass %

A batch of PCB 169 was obtained from a commercial supplier.

This material is primarily intended as a calibration standard in methods of analysis of PCB 169 in environmental and other relevant matrices.

Polychlorinated biphenyls in 2,2,4 -trimethylpentane (iso-octane) ERM-AC823

This material was prepared by a commercial manufacturer to a specification produced by LGC. High purity PCB (polychlorinated biphenyl) standards were combined gravimetrically to produce a solution containing 15 PCB congeners in 2,2,4-trimethylpentane (iso-octane). The solution was divided into 1.2 mL portions sealed in amber glass ampoules.

This material is intended for method validation purposes and for checking instrument calibration for the measurement of polychlorinated biphenyls.

Certified values	
<u>Parameter</u>	Concentration
2,4, 4' – trichlorobiphenyl (PCB28)	703±15 (µg/kg)
2,2',5,5' – tetrachlorobiphenyl (PCB52)	706±7 (µg/kg)
2,2',4,5,5' –pentachlorobiphenyl (PCB101)	696±7 (µg/kg)
2,3',4,4',5 –pentachlorobiphenyl (PCB 118)	712±9 (µg/kg)
2,2',3,4,4',5' –hexachlorobiphenyl (PCB138)	678±37 (µg/kg)
2,2',4,4',5,5 –hexachlorobiphenyl (PCB153)	702±8 (µg/kg)
2,2',3,4,4',5,5' –heptachlorobiphenyl (PCB180)	700±9 (µg/kg)

Indicative Values ¹	
Parameter	<u>Concentration</u>
2,4',5-trichlorobiphenyl (PCB31)	697 (µg/kg)
3,3',4,4'-tetrachlorobiphenyl (PCB77)	697 (µg/kg)
2,3,3',4',6-pentachlorobiphenyl (PCB110)	690 (µg/kg)
2,2',3,4',5',6-hexachlorobiphenyl (PCB149)	695 (µg/kg)
2,3,3',4',5,6-hexachlorobiphenyl (PCB163)	689 (µg/kg)
2,2',3,3',4,4',5-heptachlorobiphenyl (PCB170)	693 (µg/kg)
2,2',3,4',5,5',6-heptachlorobiphenyl (PCB187)	693 (µg/kg)
2,2',3,3',4,4',5,5'-octachlorobiphenyl (PCB194)	693 (µg/kg)

Batch: a
Unit size: 1.2 mL

Nicotine LGC1801

Batch: 4
Unit size: 0.6 mL

Certified value:
Purity:

99.57 ± 0.32 mass %

This material is intended for use in checking the analytical procedures applied in the analysis of tobacco smoke condensate and of pesticide residues and formulations.

Hegapen Anns

River water – anions LGC6020

Batch: 2 Unit size: 250 mL

Indicative value:

Phosphate: 0.003-0.300mg/L (Range of inter-laboratory results) Collected from Menethorpe Beck, Yorkshire, UK. A soluble copper salt solution was added (as a biocide) to provide a copper concentration of 2.7 mg/L. The levels of phosphate and fluoride were adjusted by spiking the base material with high purity salts to achieve the target concentrations. The solution was thoroughly mixed and filtered sequentially through 8 μm , 1.2 μm and 0.45 μm membrane filters and 250 mL aliquots were sub-sampled into tamper evident screw-cap amber glass bottles.

This material is intended for use in development, validation, or quality control of analytical methods for the determination of anions in river waters.

4005

Certified values			
Chloride	33.1 ± 1.2 mg/L	Fluoride	0.273 ± 0.023 mg/L
Nitrate	28.2 ± 1.2 mg/L	Sulfate	82.8 ± 2.4 mg/L

River water – anions LGC6025

Batch: 1 Unit size: 250 mL

Indicative value:

Phosphate: 0.08-1.61mg/L (Range of inter-laboratory results) Collected from Menethorpe Beck, Yorkshire, UK, the water was filtered sequentially through 8.0 μm and 0.2 μm membrane filters before the addition of a soluble copper salt solution (as a biocide) to provide a copper concentration of 1 mg/L.

The levels of phosphate and fluoride were adjusted by spiking the base material with high purity salts to achieve the target concentrations. This material is intended for use in development, validation, or quality control of analytical methods for the determination of anions in river waters.

Certified values			
Chloride	$31.3 \pm 1.3 \text{mg/L}$	Fluoride	1.248 ± 0.074 mg/L
Nitrate	$38.0 \pm 1.6 \text{ mg/L}$	Sulfate	66.2 ± 1.8 mg/L

Miscellaneous Water Materials

Estuarine water trace metals

LGC6016

UKAS REFERENCE MATERIALS

4005

Batch: 1 Unit size: 50 mL Water Materials

Collected from the Severn Estuary, UK, offshore from a heavily industrialised area near Avonmouth.

This material is intended for use in development, validation or quality control of analytical methods for the determination of metals in estuarine water.

		Certified val	ues	
Cadmium	101 ± 2 μg/kg	Manganese	976 ± 31 μg/kg	
Copper	190 ± 4 µg/kg	Nickel	186 ± 3 μg/kg	
Lead	196 ± 3 μg/kg			

Indicative values				
Calcium	220 mg/L	Sodium	4700 mg/L	
Magnesium	570 mg/L	Zinc	55 μg/L	
Potassium	180 mg/L			

Landfill leachate – trace metals LGC6177

Leachate collected from a landfill site in Loughborough Leicestershire, UK.

This material is intended for use in development, validation or quality control of analytical methods for the determination of metals in landfill leachate. This material may also be applicable to other matrices where more closely matched reference materials are not available.

4005

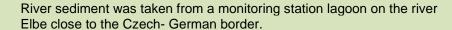
Assessed values				
Boron	$9.8 \pm 0.5 \text{ mg/L}$	Manganese	0.14 ± 0.02 mg/L	
Calcium	$74.8 \pm 1.7 \text{ mg/L}$	Nickel	0.21 ± 0.02 mg/L	
Chromium	$0.18 \pm 0.02 \text{mg/L}$	Phosphorus	11.5 ± 1.5 mg/L	
Iron	$3.8 \pm 0.2 \text{ mg/L}$	Potassium	780 ± 14 mg/L	
Manganese	73.5 ± 2.7 mg/L	Sodium	1750 ± 29 mg/L	

Batch: 1
Unit size: 50 mL

on the River

River sediment LGC6187

4005


Batch: 1

Unit size: 80 g Indicative value: Weight Loss on ignition: 12 g/100 g River sediment obtained from a monitoring station lagoon on the River Elbe close to the Czech-German border.

This material is intended for use in the development, validation or quality control of analytical methods for the determination of extractable metals in river sediment. The material may also be applicable to other matrices where more closely matched reference materials are not available.

Certified value:			
Arsenic	24.0 ± 3.2 mg/kg	Mercury	$1.4 \pm 0.1 \text{mg/kg}$
Cadmium	$2.7 \pm 0.3 \text{ mg/kg}$	Nickel	$34.7 \pm 1.7 \text{mg/kg}$
Chromium	84.0 ± 9.4 mg/kg	Selenium	$1.2 \pm 0.2 \text{mg/kg}$
Copper	83.6 ± 4.1 mg/kg	Tin	$6.8 \pm 1.8 \text{mg/kg}$
Iron	23600 ± 1500 mg/kg	Vanadium	$38.3 \pm 6.5 \text{mg/kg}$
Lead	77.2 ± 4.5 mg/kg	Zinc	439 ± 26 mg/kg
Manganese	1240 ± 60 mg/kg		

River sediment – PAHs LGC6188

This material is intended for use in development, validation or quality control of analytical methods for the determination of polyaromatic hydrocarbons (PAHs) in sediments.

图	mulum
UKAS REFERENCE MATERIALS	
MATERIALS	

4005

Batch: 1

Unit size: 30 g
Indicative values:
Acenaphthylene
0.05 mg/kg
Acenaphthene 0.03 mg/kg
Fluorene 0.05 mg/kg
Indeno[1,2,3-cd]pyrene 0.4 mg/kg
Naphthalene 0.2 mg/kg

Weight loss on drying: 2.0 g/100 g

Assessed	d values:
Phenanthrene	0.74 ± 0.29 mg/kg
Anthracene	$0.231 \pm 0.081 \text{ mg/kg}$
Fluoranthene	1.52 ± 0.32 mg/kg
Pyrene	1.24 ± 0.50 mg/kg
Chrysene	0.63 ± 0.16 mg/kg
Benzo[a]anthracene	0.60 ± 0.19 mg/kg
Benzo[b]fluoranthene	0.68 ± 0.18 mg/kg
Benzo[k]fluoranthene	$0.323 \pm 0.084 \text{ mg/kg}$
Benzo[a]pyrene	0.51 ± 0.16 mg/kg
Dibenzo[a,h]anthracene	0.86 ± 0.023 mg/kg
Benzo[ghi]perylene	$0.35 \pm 0.12 \text{ mg/kg}$

River sediment extractable metals LGC6189

Batch: 1

Unit Size: 30 g

A river sediment was taken from a monitoring station lagoon on river Elbe, in the Czech Republic, close to the Czech-German borde

Assessed Values:			
Arsenic	26 ± 2 mg/kg		
Cadmium	$3.3 \pm 0.5 \text{ mg/kg}$		
Chromium	93 ± 8 mg/kg		
Copper	87 ± 8 mg/kg		
Manganese	1120 ± 60 mg/kg		
Molybdenum	1.2 ± 0.1 mg/kg		
Nickel	34 ± 3 mg/kg		
Lead	87 ± 6 mg/kg		
Zinc	460 ± 30 mg/kg		

Sewage Sludge Material

Sewage sludge—metals ERM-CC136

Batch: a Unit size: 25 g

Heropedkins Aged sewage sludge collected from a disused sewage works site at Heathrow in London, UK. Dried, sterilised and ground to a powder. The extractable metal content refers to metals soluble in aqua regia using methods based on ISO 11466:1995.

This material is intended for use as a reference material in the development, validation or quality control of analytical methods for the determination of extractable metals in sewage sludge.

Assessed values:				
Aluminium	15100 ± 5400 mg/kg	Magnesium	2820 ± 540 mg/kg	
Barium	633 ± 195 mg/kg	Manganese	544 ± 32 mg/kg	
Chromium	399 ± 32 mg/kg	Nickel	130 ± 10 mg/kg	
Cobalt	23.2 ± 3.6 mg/kg	Potassium	2030 ± 844 mg/kg	
Copper	464 ± 21 mg/kg	Sodium	397± 64 mg/kg	
Iron	22200 ± 2780 mg/kg	Zinc	890 ± 140 mg/kg	
Lead	341 ± 18 mg/kg			

Sewage sludge extractable metals LGC6181

4005

Batch: 1 Unit size: 100 g This material is a digested sewage sludge of mixed origin which was taken from a city water treatment plant immediately after discharge from a digestion tank.

This material is intended for use in development, validation or quality control of analytical methods for the determination of extractable metals in sewage sludge.

The extractable metal content refers to metals soluble in hot Aqua Regia using methods based on ISO 11466:1995.

Certified values:				
Arsenic	$7.8 \pm 0.9 \text{ mg/kg}$	Manganese	454 ± 23 mg/kg	
Cadmium	$5.8 \pm 0.3 \text{ mg/kg}$	Mercury	$4.9 \pm 0.4 \text{ mg/kg}$	
Chromium	78 ± 8 mg/kg	Nickel	45 ± 3 mg/kg	
Copper	354 ± 18 mg/kg	Silver	55 ± 5 mg/kg	
Iron	40300 ± 2300 mg/kg	Vanadium	20 ± 2 mg/kg	
Lead	105 ± 8 mg/kg	Zinc	1100 ± 50 mg/kg	

Sewage sludge - PAHs LGC6182

4005

Batch: 1 Unit size: 30 g

Indicative values Acenaphthylene: 0.4 mg/kg Dibenzo(a,h)anthracene: 0.09 mg/kg Acenaphthene: 0.09 mg/kg Benzo[k]fluoranthene: 0.3 mg/kg

Phenanthrene: 0.8 mg/kg

Digested sewage sludge of mixed origin was taken from a water treatment plant immediately after discharge from a ment. validation or

PAHs in sewage sludge.

Assessed values:				
Naphthalene	0.20 ± 0.13 mg/kg	Benzo[a]anthracene	0.56 ± 0.21 mg/kg	
Fluorene	0.159 ± 0.068 mg/kg	Benzo[b]fluoranthene	0.71 ± 0.14 mg/kg	
Anthracene	0.162 ± 0.067 mg/kg	Benzo[a]pyrene	0.406 ±0.087 mg/kg	
Fluoranthene	1.35 ± 0.26 mg/kg	Indeno[1,2,3- <i>cd</i>]pyrene	0.36 ± 0.15 mg/kg	
Pyrene	1.26 ± 0.43 mg/kg	Benzo[ghi]perylene	0.46 ± 0.27 mg/kg	
Chrysene	0.76 ± 0.18 mg/kg			

Sewage sludge - PCBs LGC6184

Batch: 1 Unit size: 30 g Digested sewage sludge of mixed origin, taken from a city water treatment plant in the Czech Republic, immediately after discharge from a digestion tank.

This material is intended for use in development, validation or quality control of analytical methods for the determination of polychlorinated biphenyls in sewage sludge.

	Certified values:	
PCB 101	37 ± 3 μg/kg	
PCB 118	17 ± 2 μg/kg	
PCB 153	112 ± 8 μg/kg	

m a brickworks

Contaminated brick works soil ERM-CC135

UKAS REFERENCE BATERIALS

4005

Batch: a Unit size: 50 g

This material is a contaminated soil that was obtained from a brickworks site in Hackney, London.

This material is intended for use as a reference material in the development, validation or quality control of analytical methods for the determination of extractable metals and total metals in soils.

The extractable metal content refers to metals soluble in aqua regia using methods based on ISO11466 (1995).

Certified values:				
Aluminium	22700 ± 4600 mg/kg	Potassium	5100 ± 920 mg/kg	
Barium	134 ± 10 mg/kg	Magnesium	$7000 \pm 580 \text{ mg/kg}$	
Beryllium	1.4 ± 0.4 mg/kg	Manganese	348 ± 18 mg/kg	
Calcium	21900 ± 520 mg/kg	Sodium	362 ± 44 mg/kg	
Cobalt	20 ± 4 mg/kg	Nickel	277 ± 13 mg/kg	
Chromium	336 ± 28 mg/kg	Lead	391 ± 16 mg/kg	
Copper	105 ± 5 mg/kg	Selenium	$0.9 \pm 0.3 \text{mg/kg}$	
Iron	40900 ± 2700 mg/kg	Vanadium	78 ± 11 mg/kg	
Mercury	$3.2 \pm 0.4 \text{mg/kg}$	Zinc	316 ± 41 mg/kg	

Additional material			
information			
Lithium	20 mg/kg		
Molybdenum	20 mg/kg		
Tin	35 mg/kg		
Titanium 200 mg/kg			

Total met	al content
Aluminium	50000 mg/kg
Beryllium	2 mg/kg
Cobalt	28 mg/kg
Lithium	54 mg/kg
Molybdenum	26 mg/kg
Tin	37 mg/kg
Titanium	3400 mg/kg
Selenium	1 mg/kg

Contaminated soil – PCBs and PAHs LGC6115

4005

Batch: 1 Unit size: 50 g This material was sourced and prepared under contract by an experienced commercial laboratory.

This material is intended for use in validating methods for the determination of PCBs and PAHs in soil materials.

Certified Values:				
PCB101	93 ± 7 μg/kg	Benzoanthracene	36 ± 1 mg/kg	
PCB118	116 ± 4 µg/kg	Benzopyrene	13 ± 0.02 mg/kg	
Phenanthrene	178 ± 6 mg/kg	Benzoperylene	0.33 ± 0.06 mg/kg	
Fluoranthene	$312 \pm 7 \text{ mg/kg}$			

Contaminated clay loam soil extractable metals, PAHs and inorganics LGC6145

4005

Batch: 1 Unit size: 50 g This material was blended from two soils, sourced from the Czech F ublic and one soil sourced from the UK.

This material is intended for use in validating methods for the determination of metals in soil materials.

The extractable metal content refers to metals soluble in aqua regia using methods based on ISO 11466:1995.

Certified values: Extractable Metal Content				
Arsenic	38.7 ± 1.2 mg/kg	Nickel	39.0 ± 2.5 mg/kg	
Cadmium	0.65 ± 0.07 mg/kg	Selenium	1.81 ± 0.13 mg/kg	
Chromium	47.6 ± 1.8 mg/kg	Vanadium	53.9 ± 2.3 mg/kg	
Copper	62.2 ± 3.6 mg/kg	Zinc	137 ± 6 mg/kg	
Lead	45.1 ± 2.3 mg/kg			

Assessed values:			
Phenanthrene	325 ± 26 mg/kg		
Chrysene	$45 \pm 9 \text{ mg/kg}$		
Benzo[b]fluoranthene	12 ± 3 mg/kg		
Indeno[1,2,3- <i>cd</i>] pyrene	0.97 ± 0.28 mg/kg		
Water soluble chloride	65 ± 9 mg/kg		
Water soluble sulfate	$5.3 \pm 0.7 \text{ g/L}$		

Loamy sand soil 2 – total petroleum hydrocarbons **LGCQC3013**

Batch: 1 Unit size: 100 g Indicative value: $TPH (C_{10} - C_{40}) 4100 \text{ mg/kg}$ This material was prepared from a soil sample obtained from a contaminated electricity sub-station site in the UK.

This material is intended for use as a quality control material for analytical methods used in the investigation of soil for TPH contamination.

Textural classification - loamy sand			
Sand 2.00 – 0.063	87 % m/m	Clay <0.002 mm	7 % m/m
Silt 0.063 – 0.002 mm	6 % m/m		

Food & Beverage

Alcohol Solutions

Reference spirit -**5 % ABV** LGC5404

Batch: 21 Unit size: 25 mL

Certified values: Alcohol strength: $5.02 \pm 0.04 \% ABV$ Density: $989.98 \pm 0.04 \text{ kg/m}^3$ A suitable supply of ethanol was obtained, checked for purity and diluted with water to produce a solution with a nominal ethanol concentration of 5 % ABV.

The primary use of this reference material is for checking the calibration of automatic density meters commonly used in industry to determine alcoholic strength, and for checking analyst and method performance.

Reference spirit -15 % ABV LGC5405

Batch: 12 Unit size: 25 mL

Certified values: Alcohol strength: 14.99 ± 0.04 % ABV Density: $977.93 \pm 0.05 \text{ kg/m}^3$

A suitable supply of ethanol was obtained, checked for purity and diluted volumetrically with water to produce a solution with a nominal ethanol concentration of 15% alcohol by volume.

The primary use of this reference material is for checking the calibration of automatic density meters commonly used in industry to determine alcoholic strength, and for checking analyst and method performance.

Reference spirit -40 % ABV ERM-AC406

Batch: g Unit size: 25 mL

Certified values: Alcohol strength: 40.07 ± 0.04 % ABV Density: $946.87 \pm 0.06 \text{ kg/m}^3$ A suitable supply of ethanol was obtained, diluted volumetrically with water to produce a solution with a nominal ethanol concentration of 40 % ABV.

The primary use of this reference material is for checking the calibration of automatic density meters commonly used in industry to determine alcoholic strength, and for checking analyst and method performance.

Reference spirit -40% ABV LGC5412

Batch: a Unit size: 50 mL

Certified values: Alcohol strength: 40.08 ± 0.04 % ABV

Density: 946.86 ± 0.06 kg/m³

A suitable supply of ethanol was obtained, diluted volumetrically with water to produce a solution with a nominal ethanol concentration of 40 % ABV.

The primary use of this reference material is for checking the calibration of automatic density meters commonly used in industry to determine alcoholic strength, and for checking analyst and method performance.

4005

Reference spirit -70 % ABV LGC5407

Batch: d Unit size: 25 mL

<u>Certified values:</u> Alcohol strength: 70.09 ± 0.03 % ABV

Density (in air): 884.27 ±0.07 kg/m³ A suitable supply of ethanol was obtained, diluted volumetrically with water to produce a solution with a nominal ethanol concentration of 70 % ABV.

The primary use of this reference material is for checking the calibration of automatic density meters commonly used in industry to determine alcoholic strength, and for checking analyst and method performance.

4005

Wine - nominal 5 % ABV

ERM-BA001

Batch: a
Unit size: 250 mL

Certified values:
Alcohol: 5.37 ± 0.05 %
(at 20 °C)

A suitable supply of wine was obtained from a commercial source.

The wine was stabilised with the addition of sodium metabisulfite and citric acid and thoroughly mixed.

This material is intended for use as a reference material for the validation of methods for the determination of alcohol content in alcoholic beverages.

4005

Wine - nominal 10 % ABV ERM-BA002

Batch: a
Unit size: 250 mL
Certified values:
Alcohol: 10.12 ± 0.04 %
(at 20 °C)

Hebelpeaning.

A suitable supply of wine was obtained from a commercial source. The wine was stabilised with the addition of sodium metabisulfite and citric acid and thoroughly mixed.

This material is intended for use as a reference material for the validation of methods for the determination of alcohol content in alcoholic beverages.

Wine - nominal 15 % ABV ERM-BA003

A suitable supply of wine was obtained from a commercial source. The wine was stabilised with the addition of sodium metabisulfite and citric acid and thoroughly mixed.

Batch: a Unit size: 250 mL

This material is intended for use as a reference material for the validation of methods for the determination of alcohol content in alcoholic beverages.

4005

Certified values: Alcohol: 14.47 ± 0.10 %

(at 20 °C)

Lager - 5 % ABV ERM-BA005

Batch: a Unit size: 330 mL

A supply of pasteurised lager was obtained from a commercial source

This material is intended for use as a reference material for the development, validation, or quality control of methods for the determination of alcohol in alcoholic beverages.

400

Certified values:

Alcohol strength

5.07 ± 0.05 %

Brandy - 40 % ABV LGC5000

Batch: 4
Unit size: 50 mL

Certified values:
Apparent alcoholic strength:
37.834 ± 0.035 % ABV

Actual alcoholic strength: 40.075 +0.070 / - 0.067% ABV Apparent density: 950.376 ± 0.056 kg/m³ A supply of brandy was obtained from a commercial source.

This material is intended to be used for calibration of density meters and the validation of methods for the determination of alcoholic strength in obscured spirits by the UK statutory method of distillation and density measurement.

4005

Whisky - congeners LGC5100

4005

Batch: 2 Unit size: 10 mL

A suitable supply of whisky was obtained from a commercial source.

The intended for use in development, validation or quality

The determination of congeners in

The matrices where suitable reference materials are not available.

	Certified	values:	
Methanol	5.20±0.32 g/100 L	2-Methyl butanol	21.4 ± 0.72 g/100 L
Propanol	57.0±2.4 g/100 L	3-Methyl butanol	58.2 ± 2.1 g/100 L
2-Methyl Propanol	58.8±3.1 g/100 L	Butanol	0.48±0.11 g/100 L

Indicative values:				
Ethyl Acetate	23 g/ 100 L of alcohol	Apparent Alcohol Content	40.06 % ABV	
Furfural	0.82 g/100	L of alcohol		

Drink Products

Orange juice ERM-BD011

Commercially obtained orange juice was diluted with water.

Batch: a Unit size: 3 mL This material is intended for use as a reference material in the development, validation, or quality control of analytical methods for the determination of degrees Brix or refractive index of sugar solutions and food extracts.

1%	Babean	
he	UKAS REFERENCE MATERIALS	

4005

Certified values:

1.26 ± 0.08 Degrees brix

1.3348 ± 0.0002 Refractive index

Orange juice ERM-BD013

Commercially obtained orange juice was enriched with sucrose.

Batch: a Unit size: 3 mL This material is intended for use as a reference material in the development, validation, or quality control of analytical methods for the determination of degrees Brix or refractive index of sugar solutions and food extracts.

4005

Certified values:			
Degrees brix 22.07 ± 0.08			
Refractive index	1.3673 ± 0.0002		

Orange juice ERM-BD014

Commercially obtained orange juice was enriched with sucrose.

Batch: a Unit size: 3 mL This material is intended for use as a reference material in the development, validation, or quality control of analytical methods for the determination of degrees Brix or refractive index of sugar solutions and food extracts.

Certified values:			
Degrees brix	55.55 ± 0.19		
Refractive index	1.4320 ± 0.0005		

Fruit Squash – Total SO₂ LGC7113

Batch: 1 Unit size: 55 mL Certified value:

Total Sulfur Dioxide 255 ± 41 mg/L The material was prepared using a commercially sourced Cranberry and raspberry squash which was spiked with sodium metabisulfite to raise the SO₂ concentration to the required level.

This material is intended for use in the development, validation Or quality control of analytical methods for the determination of total SO₂ in beverages.

4005

Fish and Fish Products

Heboped ATAB

Crab paste proximates and elements LGC7164

4005

Batch: 1 Unit size: 140 g Brown crab meat purchased from a commercial supplier was blended with small amounts of sodium polyphosphate, sodium chloride and water to a smooth paste. The paste was dispensed into cans, sealed and then heat treated to ensure sterility.

For constituents where the assigned value is described as Certified or Assessed, the intended use of this material is for the development, validation, (including the assessment of method bias), and quality control of methods for the analysis of crab and seafood products. Where the assigned value is described as Indicative, the material is suitable for monitoring the performance of a method or analyst, but not suitable for assessing method bias. The material may also be applicable to other similar matrices and procedures where suitable reference materials are not available.

Certified values:				
Moisture	59.26 ± 0.56 g/100 g	Lead	0.0697 ± 0.0047 mg/kg	
Nitrogen	3.541 ± 0.087 g/100 g	Magnesium	43.1 ± 3.8 mg/100 g	
Total fat	12.13 ± 0.72 g/100 g	Manganese	3.28 ± 0.29 mg/kg	
Ash	2.855 ± 0.059 g/100 g	Phosphorus	564 ± 40 mg/100 g	
Chloride	0.78 ± 0.10 g/100 g	Potassium	179 ± 11 mg/100 g	
Calcium	348 ± 35 mg/100 g	Sodium	463 ± 45 mg/100 g	
Cadmium	9.20 ± 0.48 mg/kg	Zinc	56.8 ± 5.5 mg/kg	
Copper	20.1 ± 2.4 mg/kg			
Assessed values:				
Arsenic	13.8 ± 1.8 mg/kg	Cobalt	0.131 ± 0.022 mg/kg	

	Indicative values:			
Aluminium	Range 1 – 4 mg/kg	Nickel	Range 0.1 – 1.1 mg/kg	
Chromium	Range 0.05 – 1.0 mg/kg	Selenium	Range 1.4 – 4.0 mg/kg	
Mercury	Range 0.08 – 0.11mg/kg			

Food & Beverage Purity Materials

Butylated hydroxyanisole (BHA) ERM-AC301

A batch of butylated hydroxyanisole was obtained from a commercial supplier of chemical reagents. The purity was assessed by combining data from HPLC-UV, DSC and GC.

Batch: a

This material is primarily intended for use as a calibration standard in methods of analysis for BHA in foodstuffs and other similar matrices.

Unit size: 0.5 g

Certified value:

Purity: 99.2 ± 0.6 mass %

4005

Leucomalachite green ERM-AC303

Batch: a

Unit size: 0.1 g

Certified value:

Purity:

98.8 ± 0.8 mass %

A batch of leucomalachite green was obtained from a commercial supplier of chemical reagents. The purity of the material was determined by HPLC-UV.

The primary use of this reference material is for the calibration of methods for the determination of leucomalachite green in fish and other similar matrices.

p,p'-DDE **LGC1110**

Batch: 1 Unit size: 0.25 g **Certified value:**

Purity: 99.6 ± 0.4 mass % A batch of p,p'-DDE was obtained from a commercial supplier, ground and dried under vacuum.

This material is intended for use in the preparation of solutions for the calibration of analytical instruments used in pesticide residue and formulation analysis.

4005

Malathion LGC1205

Batch: 1 Unit size: 0.25 g Certified value:

Purity: 99.4 ± 0.6 mass % A batch of malathion was dried at ambient temperature under vacuum.

This material is intended for use as a calibration standard in methods of analysis for malathion in food, environmental and other relevant matrices.

Butylated hydroxytoluene (BHT) LGC7300

Batch: 1 Unit size: 0.5 g Certified value:

Purity: 99.8 + 0.2/- 1.4 mass %

A batch of butylated hydroxytoluene, obtained from a commercial supplier of chemical reagents, was ground, mixed and dispensed.

This material is intended for use as a calibration standard in methods of analysis for BHT in foodstuffs and other relevant matrices.

4005

Saccharin LGC7302

Batch: 1 Unit size: 0.5 g Certified value:

Purity: 99.6 + 0.4/- 0.6 mass %

A batch of saccharin, obtained from a commercial supplier of chemical reagents, was ground, mixed and dispensed.

This material is intended for use as a calibration standard in methods of analysis for saccharin in foodstuffs, beverages and other relevant matrices.

4005

Potassium sorbate LGC7305

Batch: 1 Unit size: 0.5 g Certified value:

Purity: 99.8 ± 1.6 mass %

A batch of potassium sorbate, obtained from a commercial supplier of chemical reagents, was ground, mixed, dried over P2O5 and dispensed.

This material is intended for use as a calibration standard in methods of analysis for potassium sorbate in foodstuffs and other relevant matrices.

Selenomethionine enriched with ⁷⁶Se LGC7330

Batch: 1 Unit size: 0.01 g

Certified value:

Purity: 99.8 +0.2/-3.1 mass %

A quantity of ⁷⁶Se -enriched selenomethionine was prepared from ⁷⁶Se -enriched selenium obtained from a commercial supplier.

The primary use of this material is as a spike material for the determination of selenomethionine by species-specific isotope dilution with HPLC-ICP-MS, in combination with a standard of selenomethionine with natural isotopic composition.

Fruit and Vegetable Products

Heropedanne

Strawberry leaves LGC7162

Batch: 1 Unit size: 20 g The raw material was collected from a private farm in the Czech Republic The mixture was cut and jet milled to pass a 250 µm nylon sieve. The resulting powder was homogenised, separated in 20 g portions and placed in 60 mL bottles.

This material is intended for use in development, validation or quality control of analytical methods for the determination of elements in vegetation.

	Comtific	d velueer	
		d values:	
Arsenic	$0.28 \pm 0.07 \text{ mg/kg}$	Manganese	171 ± 10 mg/kg
Barium	107 ± 10 mg/kg	Mercury	0.027 ± 0.006 mg/kg
Cadmium	$0.17 \pm 0.04 \text{mg/kg}$	Nickel	$2.6 \pm 0.7 \text{mg/kg}$
Calcium	1.53 ± 0.07 g/100 g	Nitrogen	2.01 ± 0.06 g/100 g
Molybdenum	$0.32 \pm 0.08 \text{ mg/kg}$	Phosphorus	0.260 ± 0.023 g/100 g
Magnesium	0.377 ± 0.017 g/100 g	Potassium	1.96 ± 0.10 g/100 g
Chromium	2.15 ± 0.34 mg/kg	Strontium	64 ± 6 mg/kg
Cobalt	$0.47 \pm 0.11 \text{ mg/kg}$	Sulfur	0.174 ± 0.016 g/100 g
Iron	818 ± 48 mg/kg	Zinc	24 ± 5 mg/kg
Lead	$1.8 \pm 0.4 \text{mg/kg}$		

Indicative values:				
Total Aluminium	0.1 g/100 g	Total sodium	210 mg/kg	
Extractable Aluminium	0.06 g/100 g	Extractable sodium	65 mg/kg	
Copper	10 mg/kg	Selenium	0.04 mg/kg	
Lithium	0.7 mg/kg	Vanadium	1.8 mg/kg	

Kale powder - nitrate LGC7114

Batch: 1 Unit size: 10 g

Assessed Value Nitrate (as NO₃): $3198 \pm 79 \, \text{mg/kg}$ Dry, ground kale powder was sourced from a commercial supplier. The bulk material was combined, mixed and bottled in 10 g portions in 30 mL amber glass bottles with tamper-evident screw-cap tools. The bottled material was irradiated using gama irradiation at a dose of ~23 KGy.

This reference material is primarily intended for use in the development, validation or quality control of analytical methods for the determination of nitrate in green vegetables. The material may also be applicable to other similar matrices where more clearly matched reference materials are not available.

4005

Meat and Meat Products

Beef LGC7221

Batch: 8 Unit size: 10 g

Assessed value Ground raw beef Beef was purchased from a commercial source as one topside joint, labelled as beef topside joint. The surface of the meat was removed and discarded to minimise the risk of cross-contamination and then the sample was prepared by removing any separable fat, retaining the lean meat. The lean meat was cubed, homogenised in a food processor, combined and then mixed.

This material is intended for use as a reference material in procedures for the identification of beef.

The species content of this material was checked using both an immunoassay test and DNA analysis.

4005

Pork LGC7222

Batch: 7 Unit size: 10 g

Assessed value Ground raw pork Pork was purchased from a commercial source as one piece of boned leg. The piece was trimmed, and the lean meat homogenised to produce a paste.

This material is intended for use as a reference material in procedures for the identification of pork.

The species content of this material was checked using both an immunoassay test and DNA analysis.

4005

1 % w/w Pork in Beef (nominal) LGC7242

Batch: 7 Unit size: 2 g

Assessed Value Pork as a percentage of total meat: 1%

The material was prepared by weighing the required amounts of authentic meat materials LGC7222 Pork and LGC7221 Beef into 60 mL screw-cap sample containers.

This material is intended for use as a positive control material in procedures for the identification of pork in beef.

Processed Food Products

Wheat flour selenium and selenomethionine ERM-BC210

Batch: a Unit size: 30 g

Certified values: Total selenium: 17.23 ± 0.91 mg/L

Selenomethionine: 27.4 ± 2.6 mg/L

Selenised wheat was obtained from a UK university. The grain was cleaned with water, milled at a temperature between 18 $^{\circ}$ C and 20 $^{\circ}$ C and 60 $^{\circ}$ C relative humidity, and sieved twice to a final particle size of 140 μ m.

The primary use of this certified reference material is for the validation of methods for the determination of selenium and selenomethionine in food materials and dietary supplements.

4005

Sugar confectionery -sugars ERM-BD016

Batch: a Unit size: 14 g

Certified values:

Glucose: 5.74 ± 0.48 g/100 g Fructose: 2.89 ± 0.30 g/100 g Sucrose: 44.8 ± 1.4 g/100 g Maltose: 17.7 ± 1.1 g/100 g A commercial supply of sugar confectionery was ground, thoroughly mixed and dispensed as 14 g units into 30 mL amber glass bottles with tamper evident caps.

This material is intended for use in development, validation or quality control of analytical methods for the determination of sugars in foodstuffs. The material may also be applicable to other similar matrices where suitable reference materials are not available.

4005

Chocolate confectionery LGC7016

Batch: 3 Unit size: 15 g

Indicative values: Fructose: 0.2 g/100g Glucose: 0.2 g/100g

Calculated values:
Milk in fat: 19.6 g/100g
Milk fat in sample: 5.8 g/100g

A commercial supply of sugar confectionery was obtained.

This material is intended for use in development, validation or quality control of analytical methods for the determination of sugar in foodstuffs.

4005

Assessed values:				
Lactose	7.06 ± 0.96 g/100 g	Butyric acid in fat	0.677 ± 0.071 g/100 g	
Sucrose	46.5 ± 2.3 g/100 g	Nitrogen	1.274 ± 0.024 g/100 g	
Total Fat	29.64 ± 0.35 g/100 g			

Sweet digestive biscuit LGC7103

Wholemeal digestive biscuits were obtained from a commercial supplier to intended for use in the development, validation or quality determination of proximates, sugars

The material may also be applicable to other matrices where suitable materials are not available.

	Assessed values:			
Moisture	2.88±0.76 g/100 g	Ash at 550°C	1.599±0.077 g/100 g	
Nitrogen	1.073±0.032 g/100 g	Sucrose	13.89±0.53 g/100 g	
Total Fat	21.17±0.45g/ 100 g	Chloride	0.302±0.018 g/100 g	

Batch: 3 Unit size: 48 g

Assessed values:					
Sodium 5010±400 mg/kg Phosphorus 900±140 mg/kg					
Potassium	1580±170 mg/kg	Manganese	254±59 mg/kg		
Magnesium	254±59 mg/kg	Zinc	6.41±0.99 mg/kg		

Chocolate mousse dessert – peanut protein LGCQC101-KT

The materials were prepared by mixing commercial, dry food ingredients to make a paste. Peanut protein was added to LGCQC1012 using a commercial defatted peanut flour (57 g/100 g protein content).

Batch: 1 Unit size: 2 x 5 g

The materials are intended for use as quality control materials for analytical methods used in the determination of peanut protein in foods.

Indicative values: LGCQC1011 peanut protein: <1 mg/kg (negative control)

They are not suitable for establishing method bias.

LGCQC1012 peanut protein: 10 mg/kg (positive control)

Peanut flour LGCQC1020

Light roasted, partially defatted, peanut flour.

Batch: 1 Unit size: 2 x 5g

Calculated value:			
Protein	49.7 g /100 g		
Indicative values:			
Total Nitrogen	9.1 g / 100 g		
Water	4.8 g /100 g		

Processed meat - Proximates, chloride, hydroxyproline & metals LGC7155

UKAS REFERENCE MATERIALS

Batch: 003 Unit size: 50g The material was prepared using a commercial pork-based processed meat. After thorough mincing and mixing, it was sealed in sachets in 50g portions and irradiated to sterilise using a dose of 18KGy.

The material is intended for use in the development, validation or quality control of analytical methods for the determination of major constituents and selected additional analytes in meat and meat products. The material may also be applicable to other matrices and procedures where suitable reference materials are not available.

Certified values:			
Moisture	55.13 ± 0.43 g / 100 g		
Nitrogen	2.202 ± 0.046 g / 100 g		
Total fat	24.23 ± 0.59 g / 100 g		
Ash	3.229 ± 0.059 g / 100 g		
Chloride	1.377 ± 0.072 g / 100 g		
Hydroxyproline	0.359 ± 0.025 g / 100 g		

Certified values:			
Magnesium	11.02 ± 0.73 mg / 100 g		
Phosphorus	236 ± 13 mg / 100 g		
Potassium	187.4 ± 8.3 mg / 100 g		
Sodium	1110 ± 63 mg / 100 g		

Indicative values:		
Calcium	8 mg / 100g	
Iron	0.6 mg / 100g	
Nitrate (as NO ₃)	0.6 to 25.1 mg / kg	

Calculated value:		
Salt (NaCl)	2.27 ± 0.12 g / 100 g	

Allergen reference material -Skimmed milk powder LGC7421

4005

Batch: 001

Unit size: 1.1 ± 0.1 g

The raw material was sourced by the University of Manchester from reputable supplier to minimise the risk of contamination, and was described as organic skimmed milk powder, produced in Austria from Austrian or EU pasteurised, skimmed milk. The skimmed milk powder was packaged as received without further processing by combining and mixing before weighing in (1.1 ± 0.1) g portions into amber glass vials. The vials were closed under argon with a rubber stopper and a crimp cap. Each unit was sealed inside a metallised sachet to minimise changes in water content.

The material is intended for use in (a) method development: e.g. in the generation of allergen kit calibrator extract solutions, (b) method validation: e.g. in the generation of external check calibrator extract solutions for allergen measurements (c) recovery estimates: to spike food matrices either by way of an extract, but preferably by addition of the raw material itself to assess allergen recovery in real life situations for which no other RMs are available.

LGC7421 can also be used in the quality control of methods for the determination of nitrogen and water in food ingredients and processed food products.

Assessed values:			
Nitrogen	5.40 ± 0.17 g / 100 g		
Water	4.22 ± 0.40 g / 100 g		

Allergen reference material -Egg white powder LGC7422

4005

Batch: 001

Unit size: 1.1 ± 0.1 g

The raw material was sourced by the University of Manchester from a reputable supplier to minimise the risk of contamination, and was described as 'Origin: Austria'. The hens' egg white powder was packaged as received by combining and mixing before weighing in (1.1 ± 0.1) g portions into amber glass vials. The vials were closed under argon with a rubber stopper and a crimp cap. Each unit was sealed inside a metallised sachet to minimise changes in water content. 550 units were packaged and stored at (5 ± 4) °C.

The material is intended for use in (a) method development: e.g. in the generation of allergen kit calibrator extract solutions, (b) method validation: e.g. in the generation of external check calibrator extract solutions for allergen measurements (c) recovery estimates: to spike food matrices either by way of an extract, but preferably by addition of the raw material itself to assess allergen recovery in real life situations for which no other RMs are available.

LGC7422 can also be used in the quality control of methods for the determination of nitrogen and water in food ingredients and processed food products.

Assessed values:			
Nitrogen	13.49 ± 0.41 g / 100 g		
Water	6.01 ± 0.53 g / 100 g		

Allergen reference material Almond powder LGC7424

4005

Batch: 001

Unit size: 1.1 ± 0.1 g

The raw material was sourced by the University of Manchester from a reputable supplier to minimise the risk of contamination, and was described as: 'Origin: California, USA. Blanched ground almonds. The almond powder was packaged as received by combining and mixing before weighing in (1.1 ± 0.1) g portions into amber glass vials. The vials were closed under argon with a rubber stopper and a crimp cap. Each unit was sealed inside a metallised sachet to minimise changes in water content. 550 units were packaged and stored at (5 ± 4) °C.

The material is intended for use in (a) method development: e.g. in the generation of allergen kit calibrator extract solutions, (b) method validation: e.g. in the generation of external check calibrator extract solutions for allergen measurements (c) recovery estimates: to spike food matrices either by way of an extract, but preferably by addition of the raw material itself to assess allergen recovery in real life situations for which no other RMs are available.

LGC7424 can also be used in the quality control of methods for the determination of nitrogen and water in food ingredients and processed food products.

Assessed values:			
Nitrogen	4.19 ± 0.13 g / 100 g		
Water	4.22 ± 0.45 g / 100 g		

Allergen reference material -Hazelnut powder – partially defatted LGC7425

4005

Batch: 001

Unit size: 1.1 ± 0.1 g

The raw material was sourced by the University of Manchester from a reputable supplier to minimise the risk of contamination, and was described as follows: 'Origin: South Island New Zealand Corylus avellana. Fine ground flour produced from the "cake" after the oil (fats) have been cold pressed out of raw hazelnut'. The hazelnut powder was packaged as received without further processing by combining and mixing before weighing in (1.1 ± 0.1) g portions into amber glass vials. The vials were closed under argon with a rubber stopper and a crimp cap. Each unit was sealed inside a metallised sachet to prevent changes in water content. 550 units were packaged and stored at (5 ± 4) °C.

The material is intended for use in (a) method development: e.g. in the generation of allergen kit calibrator extract solutions, (b) method validation: e.g. in the generation of external check calibrator extract solutions for allergen measurements (c) recovery estimates: to spike food matrices either by way of an extract, but preferably by addition of the raw material itself to assess allergen recovery in real life situations for which no other RMs are available.

LGC7425 can also be used in the quality control of methods for the determination of nitrogen and water in food ingredients and processed food products.

Assessed values:		
Nitrogen	4.99 ± 0.16 g / 100 g	
Water	8.6 ± 1.1 g / 100 g	

Allergen reference material -Walnut powder – partially defatted LGC7426

The raw material was sourced by the University of Manchester from a reputable supplier to minimise the risk of contamination, and was described as 'Origin: Italy. *Juglans regia* cultivar Lara. Lipid content 27 g/100g'.

The walnut powder was prepared by grinding using a centrifugal mill to pass a 0.5 mm sieve. The sieved material was combined and mixed before weighing in (1.1 ± 0.1) g portions into amber glass vials. The vials were closed under argon with a rubber stopper and a crimp cap. Each unit was sealed inside a metallised sachet to minimise changes in water content. 550 units were prepared and stored at (5 ± 4) °C.

4005

The material is intended for use in (a) method development: e.g. in the generation of allergen kit calibrator extract solutions, (b) method validation: e.g. in the generation of external check calibrator extract solutions for allergen measurements (c) recovery estimates: to spike food matrices either by way of an extract, but preferably by addition of the raw material itself to assess allergen recovery in real life situations for which no other RMs are available.

Batch: 001

LGC7426 can also be used in the quality control of methods for the determination of nitrogen and water in food ingredients and processed food products.

Unit size: 1.1 ± 0.1 g

Assessed values:			
Nitrogen	6.15 ± 0.19 g / 100 g		
Water	6.11 ± 0.65 g / 100 g		

Allergen kit – Milk, Egg, Almond, Hazelnut and Walnut LGC746-KT

The allergen food ingredients (LGC7421, LGC7422, LGC7424, LGC7425 and LGC7426) are intended for use in method development: e.g. allergen kit calibrator extract solutions, method validation: e.g. external check calibrator extract solutions, and recovery estimates e.g. by spiking food matrices for which no RMs are available. They can also be used in the quality control of methods for the determination of nitrogen and water in food ingredients and processed food products.

Batch: 001 Unit size: Kit The blank matrix (LGC7461) is intended for use (a) as a 'no-template' control to provide assurance of absence of in-lab allergen cross contamination (either environmentally, from personnel, or in reagents) and (b) a material to assist method limit of detection calculation (as 3.3 times the standard deviation of a 'blank' dataset).

Each kit contains:

The incurred matrix (LGC7462) is intended for use (a) to optimise analytical recovery from a chocolate-type matrix, (b) inform risk assessors of the possible 'true' estimate of allergen in a questioned product, and (c) in checking in-house quality control materials.

4005

•One vial of each:
LGC7421 Skimmed milk
powder
LGC7422 Egg white powder
GC7424 Almond powder
C7425 Hazelnut powder
part of defatted
LGC7422 Valnut powder —
partially defatted

5.40 ± 0.17 g / 100 g 4.22 ± 0.40 g /

	Assesse	d values:	
LGC7421	Skimmed milk powder	Nitrogen Water	5.40 ± 0.17 g / 100 g 4.22 ± 0.40 g /
LGC7422	Egg white powder	Nitrogen	100 g 13.49 ± 0.41 g / 100 g
		Water	6.01 ± 0.53 g / 100 g
LGC7424	Almond powder	Nitrogen Water	4.19 ± 0.13 g / 100 g 4.22 ± 0.45 g / 100 g
LGC7425	Hazelnut powder- partially	Nitrogen Water	4.99 ± 0.16 g / 100 g 8.6 ± 1.1 g / 100
	defatted		g
LGC7426	Walnut powder- partially defatted	Nitrogen	6.15 ± 0.19 g / 100 g
		Water	6.11 ± 0.65 g / 100 g

Five bottles of:
 LGC7461 Chocolate paste – no added allergenic ingredients
 .LGC7462 Chocolate paste with added allergenic ingredients

	Assesse	d values:	
LGC7461	Chocolate paste-no added allergenic ingredients	Milk protein Egg white protein Hazelnut protein	<0.05 mg/kg allergen protein <0.05 mg/kg allergen protein <0.04 mg/kg allergen protein
LGC7462	Chocolate paste with added allergenic ingredients	Milk protein Egg white protein	10.0 ± 1.8 mg/kg allergen protein 10.0 ± 1.5 mg/kg allergen protein
	Indicativ	e values:	
LGC7462	Chocolate paste with added allergenic ingredients	Almond protein Hazelnut protein Walnut protein	9.7 ± 1.9 mg/kg allergen protein 9.8 +10.5/-5.1 mg/kg allergen protein 10.0 ± 2.3 mg/kg allergen protein

Animal Feeding Stuffs

Poultry feed – proximates and elements LGC7173

Batch: 004

Unit size: 50 g

A sample of poultry feed, purchased from a commercial animal feed manufacturer, was ground to pass a 1 mm sieve, thoroughly mixed and vacuum-sealed in sachets as 50 g portions.

This material is intended for use in the development, validation or quality control of analytical methods for the determination of proximates and elements in animal feeding stuffs. The material may also be applicable to other similar matrices where more clearly matched reference materials are not available.

Assessed	d values:
Moisture	10.70 ± 0.36 g/100 g
Nitrogen	2.559 ± 0.062 g/100 g
Oil	4.95 ± 0.23 g/100 g
Ash	7.224 ± 0.091 g/100 g
Crude Fibre	3.75 ± 0.38 g/100 g

	Assessed values:
Calcium	17800 ± 1200 mg/kg
Copper	14.0 ± 4.0 mg/kg
Iron	148 ± 27 mg/kg
Magnesium	2037 ± 81 mg/kg
Manganese	90 ± 13 mg/kg
Phosphorus	6590 ± 370 mg/kg
Potassium	7480 ± 310 mg/kg
Sodium	1180 ± 130 mg/kg
Zinc	78 ± 15 mg/kg

Indicative values:		
Starch	41 g/100 g	
Chloride	0.23 g/100 g	

Industrial

Elemental Analysis Material

Dibenzothiophene LGC4001

Batch: 1 Unit size: 0.5 g

Certified value: Sulfur: 17.6 ± 0.4 % m/m A supply of dibenzothiophene of adequate purity was obtained, from which aliquots were sub-sampled and sealed in vials.

This material is a micro-analytical standard intended for use in checking the performance of elemental analysers.

Acetanilide LGC4002

Batch: 1 Unit size: 1 g

Certified value: Carbon: 71.09 % m/m Hydrogen: 6.71 % m/m Nitrogen: 10.36 % m/m Acetanilide was purified by repeated fractional recrystallisation from the

The resulting product was ground, sieved, tumbled and rolled on a laboratory mill to homogenise.

This material is intended for use in the calibration of instruments used in elemental analysis.

Benzoic acid LGC4003

Batch: 1

Unit size: 1 g

Certified value:

Oxygen: 26.20 % m/m Benzoic acid was purified by repeated fractional recrystallisation from the melt. The resulting product was ground, sieved, tumbled and rolled on a laboratory mill to homogenise.

This material is intended for use in the calibration of instruments used in elemental analysis.

The theoretical composition has been used as the certified value.

4-Bromobenzoic acid LGC4008

Batch: 1

Unit size: 1 g

Certified value: Bromine: 39.75 % m/m

Pure 4-bromobenzoic acid was ground, sieved, tumbled and rolled on a laboratory mill to homogenise.

This material is intended for use in the calibration of instruments used in elemental analysis.

The theoretical composition has been used as the certified value.

2-lodobenzoic acid LGC4009

Batch: 1 Unit Size: 1 g

Certified value: lodine: 51.17 % m/m

Pure 2-iodobenzoic acid was ground, sieved, tumbled and rolled on a laboratory mill to homogenise.

Hebopedanne. This material is intended for use in the calibration of instruments used in elemental analysis.

The theoretical composition has been used as the certified value.

Hegopeaning.

Enthalpy of Fusion

Indium LGC2601

Batch: 3 Unit size: 0.5 g

Certified value: Enthalpy of fusion: $28.69 \pm 0.09 \text{ J/g}$

Melting temperature: 156.66 ± 0.19 °C

A suitable supply of indium was obtained with a nominal

of 99.9999 mol %

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

4005

Naphthalene LGC2603

Batch: 2 Unit size: 0.5 g

Certified value: Enthalpy of fusion: 18.923 ± 0.083 kJ/mol

Melting temperature: 80.25 ± 0.03 °C

A suitable supply of pure material was obtained and purified by zone refining.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Benzil

LGC2604 Batch: 2 Unit size: 0.5 g

Certified value: Enthalpy of fusion: $23.26 \pm 0.10 \text{ kJ/mol}$

Melting temperature: 94.85 ± 0.02 °C

The bulk material was purified by repeated fractional freezing from the melt.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Acetanilide LGC2605

Batch: 5 Unit size: 0.5 g

Certified value: Enthalpy of fusion: $21.793 \pm 0.085 \text{ kJ/mol}$

Melting temperature: 114.34 ± 0.02 °C

A suitable supply of pure material was obtained. Using differential scanning calorimetry (DSC) and adiabatic calorimetry the measured mole fraction of purity was 99.98 % and 99.996 % respectively.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

The bulk material was purified by repeated fractional freezing from the melt.

Benzoic acid LGC2606

Batch: 2 Unit size: 0.5 g

Certified value: Enthalpy of fusion: 17.98 ± 0.04 kJ/mol Melting temperature: 122.35 ± 0.03 °C

Diphenylacetic acid LGC2607

Batch: 6 Unit size: 0.5 g

Certified value: Enthalpy of fusion: $31.16 \pm 0.13 \text{ kJ/mol}$

Melting temperature: 147.19 ± 0.03 °C

A suitable supply of pure material was obtained. The purity of the material was assessed by adiabatic calorimetry; the measured mole fraction was 99.98%.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Lead LGC2608

Batch: 1 Unit size: 0.5 g

Certified value: Enthalpy of fusion: $4.765 \pm 0.012 \text{ kJ/mol}$

Melting temperature: 327.47 ± 0.02 °C

A suitable supply of pure material was obtained. The purity of the material was assessed by adiabatic calorimetry; the measured mole fraction was 99.9995%.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Tin LGC2609

Batch: 1 Unit size: 0.5 g

Certified value: Enthalpy of fusion: $7.187 \pm 0.011 \text{ kJ/mol}$

Melting temperature: 231.92 ± 0.02 °C

A suitable supply of pure material was obtained. The purity of the material was assessed by adiabatic calorimetry; the measured mole fraction was 99.9995%.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Biphenyl LGC2610

Batch: 1 Unit size: 0.5 g

Certified value: Enthalpy of fusion: 18.60 ± 0.11 kJ/mol

Melting temperature: 68.93 ± 0.02 °C

A suitable supply of biphenyl was obtained and purified by repeated fractional freezing from the melt. The purity of the material was assessed by Adiabatic calorimetry; the measured mole fraction was 99.992%.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Zinc LGC2611

Batch: 1 Unit size: 0.5 g

Certified value: Enthalpy of fusion: 7.103 ± 0.034 kJ/mol

Melting temperature: 419.53 ± 0.02 °C

A suitable supply of pure material was obtained. The purity of the material was assessed by Adiabatic calorimetry; the measured mole fraction was 99.9998%.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Aluminium LGC2612

Batch: 1 Unit size: 0.5 g

Certified value: Enthalpy of fusion: 10.827 ± 0.052 kJ/mol

Melting temperature: 660.33 ± 0.05 °C

A suitable supply of pure material was obtained. The purity of the material was assessed by Adiabatic calorimetry; the measured mole fraction was 99.9995%.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Phenyl Salicylate LGC2613

Batch 1 Unit size: 0.5 g

Certified value: Enthalpy of fusion: 19.18 ± 0.08 kJ/mol

Melting temperature: 41.79 ± 0.03 °C

A commercial supply of phenyl salicylate was obtained and purified by fractional crystallisation. The purity of the material was assessed by Adiabatic calorimetry; the measured mole fraction was 99.994%.

This material is intended for the calibration of differential scanning calorimeters and similar instruments.

Flash Point Material

N-Nonane ERM-FC032

Batch: a

Unit size: 100 mL

Certified value:

Non-equilibrium flashpoint:

32.5 ± 0.5 °C

A supply of n-nonane, of nominally 99 % purity, was obtained from a commercial supplier.

This material is intended for use in validation work, or in quality control procedures, for the determination of non-equilibrium flashpoint determined by the Abel closed

cup method as described in the Institute of Petroleum Standard IP170/95, and also published as British Standard

BS2000:Part 170: 1995.

4005

N-Decane ERM-FC033

Batch: a

Unit size: 100 mL

Certified value:

Non-equilibrium flashpoint:

50.0 ± 0.9 °C

A supply of n-decane, of nominally 99 % purity, was obtained from a commercial supplier.

This material is intended for use in validation work, or in quality control procedures, for the determination of non-equilibrium flashpoint determined by the Abel closed

cup method as described in the Institute

of Petroleum Standard IP170/95, and also published

as British Standard BS2000: Part 170: 1995.

4005

Gypsum Material

Natural gypsum – major oxides and trace elements LGC270

4005

Batch: 1

Unit size: 75 g

Natural gypsum, in the form of small chippings, was obtained from British Gypsum (East Leake, Leicestershire, UK). The material was prepared using a jaw crusher fitted with hardened chromium steel jaws to provide a powder, nominally 3 mm maximum diameter. The crushed material was dried at 30 °C in a calibrated drying oven. After drying, the material was milled until the powder passed a calibrated 75 µm stainless steel sieve mesh.

This reference material is intended for use in the validation of new methods, and for monitoring the performance of methods commonly used in laboratories to analyse samples of gypsum for quality control and environmental monitoring purposes.

Certified values:		
Mercury	1.35 ± 0.40 μg/kg	
A second volume:		

	Assessed values:
Aluminium (as Al ₂ O ₃)	2.872 ± 0.056 g/100 g
Calcium (as CaO)	26.31 ± 0.36 g/100 g
Iron (as Fe ₂ O ₃)	1.150 ± 0.062 g/100 g
Phosphorus (as P ₂ O ₅)	0.0367 ± 0.0052 g/100 g
Potassium (as K₂O)	0.830 ± 0.024 g/100 g
Nickel	9.5 ± 2.0 mg/kg
Vanadium	21.3 ± 3.2 mg/kg
Silicon (as SiO₂)	10.93 ± 0.22 g/100 g
Sodium (as Na₂O)	0.183 ± 0.018 g/100 g
Sulfur (as SO₃)	34.67 ± 0.60 g/100 g
Titanium (as TiO ₂)	0.1480 ± 0.0075 g/100 g
Loss on Ignition	19.78 ± 0.71 g/100 g
Zinc	19.3 ± 3.8 mg/kg

	Indicative v	values:	
Magnesium (as MgO)	3.2 g/100 g	Strontium (as SrO)	0.20 g/100 g
Manganese (as MnO)	0.030 g/100 g	Arsenic	2.4 mg/kg
Barium	170 mg/kg	Cobalt	3.8 mg/kg
Copper Thallium	5.0 mg/kg 0.18 mg/kg	Lead	4.2 mg/kg

Natural anhydrite - major oxides and trace elements LGC2701

4005

Hebold Canting Anhydrite, in the form of coarse chippings, was obtained from British Gypsum (East Leake, Leicestershire, UK). The material was prepared using a jaw crusher fitted with hardened chromium steel jaws to provide a powder, nominally 3 mm maximum diameter. The crushed material was dried at 30 °C in a calibrated drying oven.

After drying, the material was milled until the powder passed a calibrated 75 µm stainless steel sieve mesh.

This reference material is intended for use in the validation of new methods, and for monitoring the performance of methods commonly used in laboratories to analyse samples of gypsum for quality control and environmental monitoring purposes.

	Certified values:
Mercury	2.33 ± 0.18 μg/kg

Assessed values: Aluminium (as Al₂O₃) $0.045 \pm 0.029 \text{ g}/100 \text{ g}$ Calcium (as CaO) $40.82 \pm 0.67 \text{ g}/100 \text{ g}$ $0.0280 \pm 0.0096 \text{ g/}100 \text{ g}$ Iron (as Fe₂O₃) Phosphorus (as P₂O₅) $0.0069 \pm 0.0040 \text{ g/}100 \text{ g}$ Potassium (as K₂O) $0.0105 \pm 0.0050 \text{ g/}100 \text{ g}$ $0.112 \pm 0.044 \text{ g}/100 \text{ g}$ Silicon (as SiO₂) Sulfur (as SO₃) 57.8 ± 1.2 g/100 g Loss on Ignition $0.452 \pm 0.093 \text{ g}/100 \text{ g}$

Indicative values: Magnesium (as 0.080 g/100 Strontium (as 0.18 g/100 g MgO) SrO) 0.0025 Titanium (as 0.0066 g/100 Manganese (as MnO) g/100 g TiO₂₎ 0.16 mg/kg Sodium (as Na2O) 0.023 g/100 Arsenic 1.6 mg/kg 4.4 mg/kg Lead Chromium Cobalt Nickel 1.9 mg/kg 0.35 mg/kg Vanadium 2.6 mg/kg Copper 3.5 mg/kg Zinc 1.6 g/100 g

Batch: 1

Unit size: 75 g

Blended gypsum – major oxides and trace elements LGC2702

Blended gypsum, in the form of chippings and powders, was obtained. British Gypsum (East Leake, Leicestershire, UK). The material was dried 30 °C in a calibrated drying oven, then ball-milled in a cleaned 250 mL capacity agate milling vessel until the powder passed a calibrated 75 µm stainless steel sieve mesh.

This reference material is intended for use in the validation of new methods, and for monitoring the performance of methods commonly used in laboratories to analyse samples of gypsum for quality control and environmental monitoring purposes.

	Certified values:
Mercury	420 ± 35 μg/kg

Asse	ssed values:
Aluminium (as Al ₂ O ₃)	1.121 ± 0.038 g/100 g
Calcium (as CaO)	31.47 ± 0.65 g/100 g
Iron (as Fe₂O₃)	0.392 ± 0.036 g/100 g
Phosphorus (as P ₂ O ₅)	0.0177 ± 0.0079 g/100 g
Potassium (as K₂O)	0.196 ± 0.013 g/100 g
Silicon (as SiO₂)	3.01 ± 0.12 g/100 g
Sulfur (as SO ₃)	41.26 ± 0.69 g/100 g
Titanium (as TiO₂)	0.0550 ± 0.0049 g/100 g
Loss on Ignition	21.32 ± 0.21 g/100 g
Lead	8.4 ± 2.1 mg/kg
Nickel	4.8 ± 1.4 mg/kg
Vanadium	10.5 ±1.5 mg/kg
Zinc	11.7 ± 3.1 mg/kg

	Indicative v	valuac:	
Magnesium (as MgO)	0.92 g/100 g	Sodium (as	0.031 g/100
magnesium (as mgo)	0.92 g/100 g	Na ₂ O)	g g, 100
Manganese (as MnO)	0.011 g/100 g	Strontium (as SrO)	0.13 g/100 g
Arsenic	2.4 mg/kg	Copper	4.4 mg/kg
Barium	43 mg/kg	Selenium	5.1 mg/kg
Chromium	9.0 mg/kg	Thallium	0.18 mg/kg
Cobalt	1.8 mg/kg		

Batch: 1

Unit size: 75 g

Desulfurised gypsum – major oxides and trace elements LGC2703

UKAS REFERENCE

4005

Desulfurised (DSG) gypsum, in powder form, was obtained from British Gypsum (East Leake, Leicestershire, UK). The material was dried at 30 °C in a calibrated drying oven. After drying the material was ball-milled in a cleaned 250 mL capacity agate milling vessel until the powder passed a calibrated 75 µm stainless steel sieve mesh.

This reference material is intended for use in the validation of new methods, and monitoring the performance of methods commonly used in laboratories to analyse samples of gypsum for quality control and environmental monitoring purposes.

	Certified values:	
Mercury	646 ± 42 μg/kg	

	Assessed values:
Aluminium (as Al ₂ O ₃)	0.459 ± 0.031 g/100 g
Calcium (as CaO)	32.45 ± 0.86 g/100 g
Iron (as Fe₂O₃)	0.142 ± 0.023 g/100 g
Phosphorus (as P₂O₅)	$0.0120 \pm 0.0042 \text{ g}/100 \text{ g}$
Potassium (as K₂O)	0.0340 ± 0.0075 g/100 g
Silicon (as SiO₂)	$0.90 \pm 0.12 \text{ g}/100 \text{ g}$
Sulfur (as SO₃)	44.84 ± 0.55 g/100 g
Titanium (as TiO ₂)	0.0325 ± 0.0046 g/100 g
Loss on Ignition	21.21 ± 0.35 g/100 g
Nickel	3.2 ± 1.3 mg/kg
Vanadium	6.0 ±1.8 mg/kg
Zinc	9.5 ± 2.0 mg/kg

Indicative values:				
Magnesium (as MgO)	0.16 g/100 g	Sodium (as Na ₂ O)	0.022 g/100 g	
Manganese (as MnO)	0.0040 g/100 g	Strontium (as SrO)	0.012 g/100 g	
Arsenic	3.5 mg/kg	Lead	3.6 mg/kg	
Chromium	7.9 mg/kg	Selenium	11 mg/kg	
Cobalt	0.92 mg/kg	Thallium	0.076 mg/kg	
Copper	2.8 mg/kg			

Batch: 1

Unit size: 75 g

Melting Point Materials

Carbazole

ERM-FC021

Batch: a

Unit size: 0.25 g

Certified value:

Liquefaction point: 245.41 ± 0.29 °C

A batch of commercial carbazole was purified by recrystallisation and vacuum sublimation, then ground, homogenised and dried.

This material is intended for use in checking and calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

2-Chloroanthraquinone

ERM-FC022

Batch: a

Unit size: 0.25 g

Certified value:

Liquefaction point:

209.73 ± 0.24 °C

A batch of commercial 2-chloroanthraquinone was purified by recrystallisation, then ground, homogenised and dried.

This material is intended for use in checking and calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

Anisic acid ERM-FC023

Batch: a

Unit size: 0.25 g

Certified value:

Liquefaction point:

183.50 ± 0.31 °C

A batch of commercial anisic acid was ground, homogenised and dried.

This material is intended for use in checking and calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

Diphenylacetic acid ERM-FC024

Batch: a

Unit Size: 0.25 g

A batch of commercial diphenylacetic acid was ground, homogenised and dried.

This material is intended for use in checking and calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

Certified Value.
Solution Point:

14 5 ± 0.31 °C

Hebopeanthis

Benzoic acid ERM-FC025

Batch: a

Unit size: 0.25 g

A batch of commercial benzoic acid was purified by fractional crystallisation, then ground, homogenised and dried.

This material is intended for use in checking and calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

Certified value:

Liquefaction point:

122.36 ± 0.26 °C

Acetanilide ERM-FC026

Batch: a

Unit size: 0.25 g

Certified value:

Liquefaction point:

114.19 ± 0.28 °C

A batch of commercial acetanilide was ground, homogenised and dried.

This material is intended for use in checking and calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

Benzil ERM-FC027

Batch: a

Unit size:0.25 g

A batch of commercial benzil was ground, homogenised and dried.

This material is intended for use in checking and calibrating

apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

Certified value:

Liquefaction point:

94.90 ± 0.24 °C

Naphthalene

ERM-FC028

Batch: a

Unit size: 0.25 g

A batch of commercial naphthalene was ground, homogenised and dried.

This material is intended for use in checking and calibrating apparatus used for the determination of melting points of samples in glass capillary tubes

4005

CALIBRATION

Certified value:

Liquefaction point:

80.34 ± 0.22 °C

4-Nitrotoluene ERM-FC029

Batch: a

Unit size: 0.25 g

Certified value:

Liquefaction point: 51.66±0.18 °C

A batch of commercial 4-nitrotoluene was purified by fractional crystallisation, then ground, homogenised and dried.

This material is intended for use in checking and calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

Phenyl salicylate ERM-FC030

Batch: a

Unit size: 0.25 g

Certified value:

Liquefaction point:

41.82 ±0.30 °C

A commercial supply of phenyl salicylate was obtained and the purity of the material was assessed by High Performance Liquid Chromatography.

This material is intended for use in checking and Calibrating apparatus used for the determination of melting points of samples in glass capillary tubes.

4005

0423

Miscellaneous Materials Materials

Solvent yellow 124 (SY 124) ERM-AC316

A batch of Solvent Yellow 124 was obtained from a commercial source. The purity of the material was determined by HPLC-UV and GC.

Batch: a

Unit size: 0.2 g

Certified value:

Purity:

95.0 ± 1.2 mass %

This material is intended for use as an analytical standard for the determination of SY124 in fuel.

Petrol – sulfur ERM-EF212

Batch: a Unit size: 19 mL

Certified value: Sulfur: 20.2 ± 1.1 mg/kg This material is a petroleum product containing sulfur in its natural forms, closely matching commercial petrol fuels.

This material is intended for use in the development, validation or quality control of analytical methods for the determination of sulfur in petrol.

4005

Electronic cigarette liquid - nicotine & water ERM-DZ002

Batch: a Unit size: 1.2 mL

Certified value:
Nicotine (mg/g): 17.12 \pm 0.47
Nicotine (mg/mL): 18.39 \pm 0.52
Water (g/100 g): 10.76 \pm 0.91

This material was certified for not only the concentration of nicotine in an e-liquid at a level close to legislative limits but also for the water content. Both values were determined using in-house analytical methods accredited to ISO/IEC 17025.

This material has been accepted as a European Reference Material (ERM®) following peer-review, with homogeneity and short-term stability studies carried out.

The intended use of this material is for validation and quality control of methods for the determination of nicotine and water content in e-liquids. It can also be used in the training and evaluation of staff.

Colloidal gold nanoparticle - nominal diameter 30 nm

This Quality Control material is intended, primarily, to evaluate and qualify methodology and/or instrument performance related to the number-based characterisation of nanoscale particles, including particle concentration and diameter.

Batch: 1

Unit size: 5.2 mL

Assessed value:

Number Particle Concentration NP/g $(1.47 \times 10^{11}) \pm (2.8 \times 10^{10})$

Indicative values:

Particle modal diameter nm 32.7 ± 2.0 Gold mass fraction mg/kg 45.1 ± 1.5

Coming soon

Con	ning soon	HICKOR SOM SOME SOME SOME SOME SOME SOME SOME
LGC6012	Hard Drinking Water- Anions	\mathbb{Z}
LGC7161	Tomato paste	
LGC7140	Soft drink – colours	
LGC5406	40 % Alcohol by volume	

Incred Bearing

www.lgcgroup.com/nml

measurement@lgcgroup.com +44 (0)20 8943 7393 • LGC Queens Road, Teddington, Middlesex, TW11 0LY, UK

ACBODCONANIE